1. 首页

不能不知道的Node.js事件循环

事件循环

事件循环的执行顺序从图中可以看出,每次的事件循环都包含了上图中的6个阶段,接下来我们来一一解读它们。

timers 定时器

计时器分为两类:

  • Immediate 在下一个check阶段执行
  • Timeout 定时器过期后执行(delay参数默认值为1ms)

Timeout计时器又有两种类型:

  • Interval
  • Timeout

这个阶段会执行setTimeout()和setInterval()设定的回调

timers的执行是由poll阶段控制的

setTimeout()和setInterval()和浏览器中的API是相同的。它们的实现原理与异步I/O比较类似,但是不需要I/O线程池的参与。

这两个定时器创建后会被插入到定时器观察者内部的一个红黑树中。每次Tick执行时,都会从红黑树中取出定时器对象,来检查它们是否超过定时时间,超过便执行它们的回调。

注意:定时器存在一个问题,就是它不是绝对精确的(在容忍范围内)。一旦某个事件循环中,有一个任务占用了较多的时间,那么再次轮到定时器执行时,时间就会受到影响。

无IO处理情况


setTimeout(function timeout () { console.log('timeout'); },0); setImmediate(function immediate () { console.log('immediate'); });

通过执行上面的代码我们可以发现,输出结果是不确定的。

因为setTimeout(fn, 0)具有几毫秒的不确定性,无法保证进入timers阶段,定时器能立即执行处理程序。

有IO处理情况


var fs = require('fs'); fs.readFile(__filename, () => { setTimeout(() => { console.log('timeout'); }, 0); setImmediate(() => { console.log('immediate'); }); }) // immediate // timeout

此时setImmediate优先于setTimeout执行,因为poll阶段执行完成后进入check阶段,而timers阶段则处于下一个事件循环阶段了。

pending callbacks 待定回调

执行大部分回调,除了close,times和setImmediate()设定的回调

idle,perpare

仅供内部使用

poll 轮询

获取新的I/O事件,在适当的条件下,Node.js会在这里阻塞

这个阶段的主要任务是执行到达delay时间的timers定时器的回调,并且处理poll队列里的事件。

当事件循环进入poll阶段,并且没有调用定时器时,将会发生以下两种情况:

1.如果poll队列不为空,事件循环将遍历同步执行它们的回调队列。

2.如果poll队列为空,又分为两种情况:

  • 如果被setImmediate()回调调用,事件循环会结束poll阶段,进入到check阶段。
  • 如果没有被setImmediate()回调调用,事件循环将阻塞并等待回调添加到poll队列中执行。

一旦poll队列为空,事件循环将查看计时器是否到达delay时间,如果一个或多个定时器已达到delay时间,事件循环将回滚到timers定时器阶段,执行它们的回调。

check 检测

setImmediate()设定的回调会在这一阶段执行

如同上文poll阶段的第二种情况中,如果poll队列为空,并且被setImmediate()回调调用,事件循环将直接进入check阶段。

close callbacks 关闭的回调函数

socket.on('close',callback)的回调会在这个阶段执行

libuv

libuv为Node.js提供了整个事件循环功能。

如上图所示,在Windows下,事件循环基于IOCP创建,在linux下通过epoll实现,FreeBSD下通过kqueue实现,在Solaris下通过Event ports实现。

我们再细心的去看上图,Network I/O和file I/O、DNS等实现方式是被分隔开的,这是因为他们的本质是由两套机制来实现的。我们一会儿来通过源码窥探它们的本质。

实质上,当我们写JavaScript代码去调用Node的核心模块时,核心模块会调用C++内建模块,内建模块通过libuv进行系统调用。

libuv主要解决的问题

在现实世界中,在所有不同类型的操作系统平台下,支持不同类型的I/O是非常困难的。那么为了支持跨平台I/O的同时,能更好的管理整个流程,抽象出了libuv。

简单说,就是libuv抽象出一层API,可以帮助你调用各个平台和机器上各种系统特性,包括操作文件、监听socket等,而你不需要了解它们的具体实现。

核心源码解读

核心函数uv_run

源码


int uv_run(uv_loop_t* loop, uv_run_mode mode) { int timeout; int r; int ran_pending; // 检查loop中是否有异步任务,没有就结束。 r = uv__loop_alive(loop); if (!r) uv__update_time(loop); // 事件循环while while (r != 0 && loop->stop_flag == 0) { // 更新事件阶段 uv__update_time(loop); // 处理timer回调 uv__run_timers(loop); // 处理异步任务回调 ran_pending = uv__run_pending(loop); // 供内部使用 uv__run_idle(loop); uv__run_prepare(loop); // uv_backend_timeout计算完毕后,会传给uv__io_poll // 如果timeout = 0,则uv__io_poll会直接跳过 timeout = 0; if ((mode == UV_RUN_ONCE && !ran_pending || mode == UV_RUN_DEFAULT)) timeout = uv_backend_timeout(loop); uv__io_poll(loop, timeout); // check阶段 uv__run_check(loop); // 关闭文件描述符等操作 uv__run_closing_handles(loop); // 检查loop中是否有异步任务,没有就结束。 r = uv__loop_alive(loop); if (mode == UV_RUN_ONCE || mode == UV_RUN_NOWAIT) break; } return r; }

事件循环的真实面目是一个while。

上文说到Network I/O与file I/O、DNS等是由两套机制来实现的。

首先我们来看Network I/O,它最后的调用都会归结到uv__io_start这个函数,而该函数会将需要执行的I/O事件和回调放入watcher队列中,而uv__io_poll阶段会从watcher队列中取出事件调用系统的接口并执行。

(uv__io_poll部分的代码过长大家感兴趣可自行查看)

uv__io_start


void uv__io_start(uv_loop_t* loop, uv__io_t* w, unsigned int events) { assert(0 == (events & ~(POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI))); assert(0 != events); assert(w->fd >= 0); assert(w->fd < INT_MAX); w->pevents |= events; maybe_resize(loop, w->fd + 1); if (w->events == w->pevents) return; if (QUEUE_EMPTY(&w->watcher_queue)) QUEUE_INSERT_TAIL(&loop->watcher_queue, &w->watcher_queue); if (loop->watchers[w->fd] == NULL) { loop->watchers[w->fd] = w; loop->nfds++; } }

如上所示就是我们libuv中Network I/O这条主线实现过程。

而另外一条主线是Fs I/O和DNS等操作则会调用uv__work_sumit这个函数,这个函数是执行线程池初始化uv_queue_work中最终调用的函数。


void uv__work_submit(uv_loop_t* loop, struct uv__work* w, enum uv__work_kind kind, void (*work)(struct uv__work* w), void (*done)(struct uv__work* w, int status)) { uv_once(&once, init_once); w->loop = loop; w->work = work; w->done = done; post(&w->wq, kind); }

int uv_queue_work(uv_loop_t* loop, uv_work_t* req, uv_work_cb work_cb, uv_after_work_cb after_work_cb) { if (work_cb == NULL) return UV_EINVAL; uv__req_init(loop, req, UV_WORK); req->loop = loop; req->work_cb = work_cb; req->after_work_cb = after_work_cb; uv__work_submit(loop, &req->work_req, UV__WORK_CPU, uv__queue_work, uv__queue_done); return 0; }

Node.js中的事件队列

Node.js中有多个队列,不同类型的事件在各自的队列中排队。在一个阶段结束后,进入下一个阶段之前,事件循环会在这中间处理中间队列。

原生的libuv事件循环中的队列主要又4种类型:

  • 过期的定时器和间隔队列
  • IO事件队列
  • Immediates队列
  • close handlers队列

除此之外,Node.js还有两个中间队列

  • Next Ticks队列
  • Other Microtasks队列

Node.js与浏览器的Event Loop差异

我们可以回顾下浏览器中JavaScript事件循环,请移步我的另一篇系列专栏《进击的前端工程师》系列-浏览器中JavaScript的事件循环

回来后,先说结论:

在浏览器中,microtask的任务队列是每个macrotask执行完之后执行。

在Node.js中,microtask会在事件循环的各个阶段之间执行,也就是一个阶段执行完毕,就会去执行microtask队列的任务。

(本文的Macrotask在WHATWG 中叫task。Macrotask为了便于理解,并没有实际的出处。)

相比于浏览器,node多出了setImmediate(宏任务)process.nextTick(微任务)这两种异步操作。

setImmediate的回调函数被放在check阶段执行。而process.nextTick会被当做一种microtask,每个阶段结束后都会执行所有的microtask,你可以理解为process.nextTick可以插队,在下个阶段前执行。

process.nextTick插队带来的危害

process.nextTick的回调会导致事件循环无法进入到下一个阶段。I/O处理完成或者定时器过期后仍然无法执行。会让其他的事件处理程序处于饥饿状态,为了防止这个问题,Node.js提供了一个process.maxTickDepth(默认为1000)。

Node.js中的微任务

  • process.nextTick()
  • Promise.then()

Promise.resolve().then(function(){ console.log('then') }) process.nextTick(function(){ console.log('nextTick') }); // nextTick // then

我们可以看到nextTick要早于then执行。

Node.js v11变更的事件循环

从Node.js v11开始,事件循环的原理发生了变化,在同一个阶段中只要执行了macrotask就会立即执行microtask队列,与浏览器表现一致。具体请参考这个pr

作者:童欧巴
链接:https://segmentfault.com/a/1190000021150998

看完两件小事

如果你觉得这篇文章对你挺有启发,我想请你帮我两个小忙:

  1. 关注我们的 GitHub 博客,让我们成为长期关系
  2. 把这篇文章分享给你的朋友 / 交流群,让更多的人看到,一起进步,一起成长!
  3. 关注公众号 「画漫画的程序员」,公众号后台回复「资源」 免费领取我精心整理的前端进阶资源教程

JS中文网是中国领先的新一代开发者社区和专业的技术媒体,一个帮助开发者成长的社区,目前已经覆盖和服务了超过 300 万开发者,你每天都可以在这里找到技术世界的头条内容。欢迎热爱技术的你一起加入交流与学习,JS中文网的使命是帮助开发者用代码改变世界

本文著作权归作者所有,如若转载,请注明出处

转载请注明:文章转载自「 Js中文网 · 前端进阶资源教程 」https://www.javascriptc.com

标题:不能不知道的Node.js事件循环

链接:https://www.javascriptc.com/4262.html

« 前端音视频WebRTC实时通讯的核心
一起来看看Docker的内脏»
Flutter 中文教程资源

相关推荐

QR code